
CSE 240A Branch Predictor Project Report
https://github.com/Allison-Turner/CSE240A

Allison Turner, James Yuan

1 Introduction
Branch prediction is a category of algorithms that aim to

predict the outcomes of branch instructions as accurately as
possible, so that when post-branch instructions are loaded
during the later execution stages of the branch, the chance
that those post-branch instructions will be flushed is minimal
[1]. Minimizing the occurrence of anticipated post-branch
instruction flushing is desirable because such flushes waste
instruction cycles, increasing overall execution time and mak-
ing programs less efficient.

Accurate branch prediction is difficult because branch reso-
lution patterns are highly dependent on the type of program in
question. Some applications’ branch resolutions obey similar
rules of spatial or temporal locality as cache replacement poli-
cies, and others may have different behavior patterns based on
interdependent branches. Algorithms that reference all recent
branch outcomes, or "global history", attempt to leverage
any correlation between the most recent branch instruction
outcomes and the current, while those that reference the most
recent outcomes for branch instructions from a similar ad-
dress, or "local history", attempt to factor the uniqueness of
different program regions into their forecasts. At best, branch
prediction algorithms could make the performance of pro-
grams with branches equal or near-equal to those without,
and at worst, these algorithms perform similarly or worse
than a processor that always predicts the same branch resolu-
tion; so, the cost-benefit ratio of trying out new methods is
pretty positive towards new approaches.

1.1 Gshare
Gshare is a correlated predictor that combines insights from
global history with instruction address locality by accessing
a table of 2-bit predictors with the XOR of global history
and the branch instruction’s address [2]. In its favor, Gshare
has a relatively small implementation overhead. However,
its performance suffers when branch resolutions are more
accurately correlated with localized patterns.

1.2 Tournament
Tournament branch prediction is a hybrid approach, which
combines the advantages of correlated predictors, such as Gs-
elect and Gshare, with a local-history-aware approach, such
as pattern history tables (PHTs), in cases ill-suited to glob-
ally correlated prediction [2]. Its implementation overhead
is much larger than the compact needs of Gshare, because
tournament contains not only a global predictor like Gshare,
but also a local predictor like PHT, and a method for choosing

between the two. However, it is easily more accurate than
correlated predictors or local predictors alone, since it can
switch to the most accurate predictor ad hoc. The size of
each component predictor used in tournament can also be
decreased, since only some cases will end up choosing this
predictor’s forecasts.

1.3 Perceptron
A perceptron is a mathematical model of a neuron that can
simulate "learning" from a given set of inputs. The model
gets better as it refines the coefficients for a function with
binary output. This machine learning concept can be ap-
plied to branch prediction by maintaining a list of function
coefficients for every address whose lower n bits map to a
particular row entry in a table of coefficients [3]. The ac-
curacy of Perceptron alone can be enhanced by increasing
from a single-layer perceptron to a multi-layer, however the
implementation overhead for a multi-layer is significantly
more in comparison with any other predictor aforementioned
in this writeup.

1.4 Implementation
Our project focused on simulating branch predictor algo-
rithms on a small unit of program execution traces, to demon-
strate and compare their misprediction rates and implemen-
tation overheads. We wrote our simulated branch predictors
in C, and then tested each predictor on each execution trace
with a range of parameters.

1.4.1 Distribution of Work
The distribution of work was as follows:

CSE 240A course staff provided traces and the skeleton of
a simulator implemented in C.

Allison Turner implemented the data and control struc-
tures necessary for simulating gshare and tournament branch
predictor schemes.

James Yuan implemented the data and control structures
necessary for simulating single Perceptron and Perceptron-
Gshare tournament branch predictor schemes.

1.4.2 Gshare
Our implementation of Gshare uses the following data struc-
tures:

unsigned int global_history
unsigned int* branch_history_table

1



global_history is an unsigned integer of width ghistoryBits,
initialized to all zeros. branch_history_table is an array of
unsigned integers of size 2ghistoryBits, where every entry is a
2-bit predictor state, initialized to the constant unsigned int
weak_not_taken.

On a call to make_prediction with argument PC, our imple-
mentation xors global_history with PC, then applies a bitwise
mask to ensure the exclusion of PC’s higher-order bits. The
resulting value is used as the index with which to access
branch_history_table, where the predictor state contained
dictates the prediction.

On a call to train_predictor with arguments PC and out-
come, our implementation re-calculates the xor of PC and
global_history, so it can update the associated predictor state
in branch_history_table, and then shifts the new outcome into
global_history.

1.4.3 Tournament

Our first tournament predictor combines a local pattern his-
tory table approach with Gshare and a "chooser" table.

//chooser
unsigned* chooser;
unsigned* total_predictions;
unsigned* local_mispredictions;
unsigned* global_mispredictions;

//local pattern history
unsigned* local_pattern_hist;
unsigned* pattern_hist_predictor_state;

//Gshare
unsigned int global_history
unsigned int* branch_history_table

local_pattern_hist is an array of unsigned integers meant
to represent the last n outcomes for a given PC value or
set of PC values, where n = lhistoryBits. All entries in
local_pattern_hist are initialized to 0. The PC values are
mapped to an entry in this table by selecting m of their
lower bits, where m = pcIndexBits. Once the local history
is indexed from this table, that pattern is used to index pat-
tern_hist_predictor_state, where, finally, a 2-bit predictor
state is stored. This 2-bit state is initialized to weak_not_taken.

For every entry in local_pattern_hist, there is an entry in
the chooser array that contains one of two constant unsigned
integers: SIMPLE_BHT or CORRELATED_PREDICTOR.
On a call to make_prediction with argument PC, we index
the chooser array to determine which predictor we should
use, and then return based on the relevant entry of// pat-
tern_hist_predictor_state or branch_history_table.

On a call to train_predictor() with arguments PC and out-
come, our implementation shifts the newest outcome into the
relevant entry of local_pattern_hist and updates the predictor
states in pattern_hist_predictor_state and branch_history_table.
Finally, we re-calculate the misprediction rates of PHT and
Gshare, and reset the chooser value to whichever scheme has
the lowest error rate.

1.4.4 Perceptron
For our custom branch prediction scheme, we started out in
Python, attempting to implement a Multi-Level Perceptron
predictor. However, after many difficulties with both Python
usage in conjunction with C, and with the speed of our Python
Perceptron’s predictions, we shifted to a single-layer Percep-
tron written in C. Curiously, the choke point on performance
was not within our usage of PyTorch, but was within the
serialization we performed in order to communicate between
Python and C.

The custom brach predictor uses a local pattern history
table and a 2D array representing the perceptron function.

signed int* func;
unsigned int* local_pattern_hist;

local_pattern_hist is an array of unsigned integers meant to
represent the last n outcomes for a given PC value or set of PC
values, where n = lhistoryBits, just like in the implementation
of tournament. Each of the entry is initialized to 0.

func is a 2D array of signed integers. The PC values are
mapped to a certain row of the array, then each entry from
the row represents the coefficient of the perceptron function,
and those are mapped to the corresponded local history bits.
Each of the entry is initialized to 10.

On a call to train_predictor() with arguments PC and out-
come, our implementation updates the entry in local_history_table
corresponding to the PC, by shifting the history bits and
adding the newest outcome. Besides that, func is updated in
the way that if the new outcome is taken, then we go through
each bit in the corresponded local history, and if the current
local history bit is 1, then we have a positive feedback and
increment the learning rate to the corresponded coefficient,
otherwise if the current local history bit is 0, then this is a
negative feed back so we decrement the learning rate from
the coefficient.

When the perceptron predictor needs to make a branch
prediction, it simply takes the PC and finds the local history
and the coefficients. We calculate the score which is a sum
of product of the local history bit and its coefficient, and
compare it to the threshold. if the score passes the threshold,
then we predict the branch to be taken, otherwise we predict
not taken.

1.4.5 Perceptron-Gshare Tournament
Our next trial is implementing a hybrid tournament predictor
of single-layer perceptron and Gshare.

//chooser
unsigned* chooser;
unsigned* total_predictions;
unsigned* local_mispredictions;
unsigned* global_mispredictions;
unsigned custom_local_prediction;
unsigned custom_global_prediction;

//local pattern history
unsigned* local_pattern_hist;

//Gshare
unsigned int global_history

2



unsigned int* branch_history_table

//perceptron
signed int* func;

The data structures follow the same descriptions in the
section 1.4.3 for tournament and 1.4.4 for perceptron. But
now in the training predictor function, we train both gshare
and perceptron, and then update the local_mispredictions for
the perceptron predictor and the global_mispredictions for
the Gshare predictor. In the make predictionfunction, we let
both predictors make their own prediction, then based on the
misprediction rate, we choose the prediction from a better
performed predictor.

2 Observation
Misprediction Rates with Static

trace Misprediction Rate
fp1 12.128
fp2 42.350
int1 44.136
int2 5.508

mm1 50.353
mm2 37.045

Misprediction Rates with Gshare (column headers give
value of ghistoryBits, cells give misprediction rates for that
parameter & execution trace combination)

trace 5 10 15 20 25
fp1 12.127 10.682 0.906 0.912 0.919
fp2 34.755 7.053 4.123 3.917 3.918
int1 44.135 28.641 20.009 18.272 16.994
int2 5.279 1.869 1.114 1.076 0.957

mm1 50.053 14.368 8.505 6.120 4.361
mm2 37.028 36.146 19.471 13.424 13.011

Misprediction Rates with Tournament (column head-
ers give values of ghistoryBits:lhistoryBits:pcIndexBits,cells
give misprediction rates for that parameter & execution trace
combination)

trace 5:10:10 15:5:5 15:10:10 15:20:20 15:40:40
fp1 12.126 0.905 0.908 0.913 0.903
fp2 33.394 4.124 4.123 4.123 4.123
int1 44.134 20.010 19.843 19.840 19.887
int2 5.273 1.115 1.113 1.113 1.113
mm1 50.045 8.506 8.508 8.508 8.505
mm2 37.027 19.474 19.450 19.311 19.488

Misprediction Rates with Tournament (cont’d) (column
headers give values of ghistoryBits:lhistoryBits:pcIndexBits,
cells give misprediction rates for that parameter & execution
trace combination)

trace 25:10:10 25:20:20 15:5:15 15:15:5 15:20:10
fp1 0.907 0.912 0.913 0.905 0.908
fp2 3.917 3.917 4.123 4.124 4.123
int1 16.977 16.976 19.840 20.010 19.843
int2 0.954 0.954 1.113 1.115 1.113
mm1 4.367 4.365 8.508 8.506 8.508
mm2 12.821 12.498 19.322 19.474 19.450

Misprediction Rates with Perceptron Alone (column
headers give values of threshold:lhistoryBits:pcIndexBits,
cells give misprediction rates for that parameter & execution
trace combination)

trace 5:12:12 11:12:12 15:12:12
fp1 1.664 1.664 1.668
fp2 37.338 37.339 37.340
int1 21.922 21.922 21.921
int2 0.950 0.950 0.947

mm1 13.296 13.297 13.300
mm2 13.383 13.379 13.395

3



Misprediction Rates with Perceptron x Gshare Tour-
nament Prediction (column headers give values of ghisto-
ryBits:lhistoryBits:pcIndexBits, threshold is set to 1, cells
give misprediction rates for that parameter & execution trace
combination)

trace 5:12:12 10:12:12 15:12:12 25:12:12
fp1 1.407 1.233 0.890 0.891
fp2 20.922 6.889 4.122 3.916
int1 16.772 15.697 14.294 12.338
int2 0.864 0.723 0.682 0.638

mm1 10.304 6.424 5.746 3.954
mm2 11.569 11.521 9.244 8.061

3 Results and Conclusions
When global history is very low for gshare and tournament,

performance is more like static. For example, when we are
using 5 bits of global history with gshare, the misprediction
rate is about the same as static. This is simply because when
there are not enough bits to store the global history, temporal
locality patterns cannot be captured by the Gshare branch
predictor.

Higher global history usually leads to better performance,
but it usually plateaus when global history is around 15. After
that point, the marginal improvement drops when trying to
have more global history bits. Nevertheless, for some tasks
it might be higher than 15. For mm_2 we can still see a
large increase in performance when global history bits are
raised from 15 to 20. This is because the traces have different
temporal locality. For simple trace like fp_1, not a lot of
bits are required to record the global history pattern, while
for relatively complicated trace like mm_2, there is a longer
global history pattern, thus more history bits are required to
record the pattern.

When local history and PC are very low for tournament,
then performance is more like gshare. For instance, when
we are using 15 bits of global history and only allocate 5
bits to both local history and PC index with tournament, the
misprediction rate is almost the same as just using 15 bits of
global history in gshare.

Increasing local history bits does not have an obvious im-
provement on performance. For example when we are using
15 bits of global history and 5 bits for the PC index, and when
we increase local history bits from 5 to 15, no improvement
can be observed. The same situation happens when we are
suing 15 bits of global history and 10 bits of PC, and increase
local history bits from 10 to 20. Moreover, increasing PC
does improve performance, but not as obvious as increasing
global history. With our tournament implementation for ex-
ample, changing the parameters from 15:5:5 to 15:5:15 does
decreases the misprediction rate for most of the traces, by a
slight amount. Noticing allocating same amount of bits to
global history gives us better outcome than any of the other
parameters. This is suggesting that global history in general
gives more information than local history in the given traces,
especially in trace fp_2.

In addition, increasing any of the parameters does not nec-
essarily increase performance in all cases. For example, in
gshare predictor performance with the trace fp_1, increas-
ing global history bits from 15 actually makes performance
worse. In tournament predictor with the trace fp_1, increas-
ing PC index from 5 to 15 with 15 bits of global history and 5
bits of local history also decreases prediction accuracy. This
is because fp_1 only has limited temporal locality and spa-
cial locality. When extra global bits are given to the gshare
predictor, those bit are not captured by the temporal locality
pattern, therefore those become confounding variables for
the predictor. Similarly with the tournament predictor, When
extra PC index bits are given to the branch predictor, those
are not captured by the spacial locality, and thus harm the
accuracy.

Our implementation of simple single-layer perceptron does
work, however, its performance is underwhelming. Percep-
tron really shines only when implemented as part of a tourna-
ment scheme, in cases where local history is a more reliable
forecaster. This is consistent with Jiménez and Lin’s original
proposal for perceptron branch prediction [3].

The implementation overhead required for the Gshare pre-
dictor or PHT and Gshare tournament predictor has to be
much higher in order to achieve similar or better performance
to our hybrid single layer perceptron and Gshare implementa-
tion, in most cases. The one trace where our implementation
of Perceptron-Gshare tournament doesn’t significantly out-
perform other simulated predictors, the fp2 trace, can likely
be attributed to that trace’s branches following global patterns
more closely, so Gshare wins over any local history predictor
for this trace every time, however Gshare is still a suboptimal
global history approach; thus simulations on fp2 still fall
victim to Gshare’s relative underperformance.

In conclusion, of the branch prediction algorithms we sim-
ulated, we find that hybrid predictors that prioritize space
for global history and articulate a statistics-based approach
for local history are optimal. If we were to iterate further on
our simulations, our next simulated predictor would compare

4



Gshare with Gselect and other correlated predictors, both
independently and as part of a tournament predictor with Per-
ceptron, and perhaps analyze memory access for a predictor’s
declared data structures in order to comment on utilization.

4 References

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach. Waltham, MA, USA: Morgan Kaufmann,
5th ed., 2012.

[2] S. McFarling, “Combining branch predictors,” tech. rep., Palo Alto, CA,
USA, 1993.

[3] D. Jiménez and C. Lin, “Dynamic branch prediction with perceptrons,”
in Proceedings HPCA Seventh International Symposium on
High-Performance Computer Architecture, pp. 197–206, 2001.

5


	Introduction
	Gshare
	Tournament
	Perceptron
	Implementation
	Distribution of Work
	Gshare
	Tournament
	Perceptron
	Perceptron-Gshare Tournament


	Observation
	Results and Conclusions
	References

